A matrix recurrence for systems of Clifford algebra-valued orthogonal polynomials
نویسندگان
چکیده
Recently, the authors developed a matrix approach to multivariate polynomial sequences by using methods of Hypercomplex Function Theory (Matrix representations of a basic polynomial sequence in arbitrary dimension. Comput. Methods Funct. Theory, 12 (2012), no. 2, 371-391). This paper deals with an extension of that approach to a recurrence relation for the construction of a complete system of orthogonal Clifford-algebra valued polynomials of arbitrary degree. At the same time the matrix approach sheds new light on results about systems of Clifford algebra-valued orthogonal polynomials obtained by Gürlebeck, Bock, Lávička, Delanghe et al. during the last five years. In fact, it allows to prove directly some intrinsic properties of the building blocks essential in the construction process, but not studied so far.
منابع مشابه
Clifford algebra-valued orthogonal polynomials in the open unit ball of Euclidean space
A new method for constructing Clifford algebra-valued orthogonal polynomials in the open unit ball of Euclidean space is presented. In earlier research, we only dealt with scalar-valued weight functions. Now the class of weight functions involved is enlarged to encompass Clifford algebra-valued functions. The method consists in transforming the orthogonality relation on the open unit ball into ...
متن کاملClifford Wavelets and Clifford-valued MRAs
In this paper using the Clifford algebra over R4 and its matrix representation, we construct Clifford scaling functions and Clifford wavelets. Then we compute related mask functions and filters, which arise in many applications such as quantum mechanics.
متن کاملTwo variable orthogonal polynomials and structured matrices
We consider bivariate real valued polynomials orthogonal with respect to a positive linear functional. The lexicographical and reverse lexicographical orderings are used to order the monomials. Recurrence formulas are derived between polynomials of different degrees. These formulas link the orthogonal polynomials constructed using the lexicographical ordering with those constructed using the re...
متن کاملMatrix-valued polynomials generated by the scalar-type Rodrigues' formulas
The properties of matrix valued polynomials generated by the scalartype Rodrigues’ formulas are analyzed. A general representation of these polynomials is found in terms of products of simple differential operators. The recurrence relations, leading coefficients, completeness are established, as well as, in the commutative case, the second order equations for which these polynomials are eigenfu...
متن کاملGeneralizations of orthogonal polynomials
We give a survey of recent generalizations for orthogonal polynomials that were recently obtained. It concerns not only multidimensional (matrix and vector orthogonal polynomials) and multivariate versions, or multipole (orthogonal rational functions) variants of the classical polynomials but also extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations...
متن کامل